If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7d^2-8=0
a = 7; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·7·(-8)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*7}=\frac{0-4\sqrt{14}}{14} =-\frac{4\sqrt{14}}{14} =-\frac{2\sqrt{14}}{7} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*7}=\frac{0+4\sqrt{14}}{14} =\frac{4\sqrt{14}}{14} =\frac{2\sqrt{14}}{7} $
| 2x-4(x+3)=×-3 | | 5.7g+4=2.7g+22 | | 8(x-2)=4x+8 | | -7(2x-2)=154 | | 7q^2-q=0 | | 289=50-x | | 10b+(-45)=(-43) | | 15=v/5+13 | | 20y=-4+18Y | | 5x+34=-2(1+7x | | 14=-22n | | x^2+6x+-59=-4 | | 90+9.99x=14.99x | | 0.3/x=0.18 | | 3x−10=2x+12 | | x^2+6x+-59=0 | | x2+6x+-59=-4 | | x+35+10=15 | | 6x-5=122 | | 5x-3+2=9 | | 145-w=267 | | x+35=15+10 | | 7-3m=5m-23+2m | | 6x-5=119 | | 10x-1-x=2 | | 3x+1+x+13=180 | | -2+6=-6x+8 | | y-3=64 | | -4(x+6)+10=2(x+5) | | 5x-10=4x=11=180 | | 145+w=267 | | +3y=48 |